支招河南建设农业强省 代表委员出“金点子”******
中新网郑州1月16日电 (杨大勇 李超庆 阚力)大力支持建设“中原农谷”、推进高标准农田管理相关条例制定、推动“中国药谷”建设……正在召开的河南两会上,多名河南省人大代表、政协委员出“金点子”,支招河南建设农业强省。
图为河南省政协委员分组讨论现场。 记者 阚力 摄今年河南省政府工作报告提出,2023年将加快建设农业强省,扎实推进乡村振兴。力争到2025年建成1500万亩高标准农田示范区,粮食产能达到1400亿斤。扎实推进科技强农。整合农业科技力量,支持神农种业实验室争创国家实验室基地,开展核心种源等15项核心技术协同攻关,组建河南种业集团。高标准建设“中原农谷”、周口国家农高区,推进国家小麦技术创新中心、中国农科院中原研究中心等项目建设,打造现代农业科技创新高地。
在正召开的河南两会上,农业强省也成为众多人大代表、政协委员聚集热议的话题。许多人大代表、政协委员结合河南省政府工作报告提出议案和建议,支招河南建设农业强省。
“‘中原农谷’建设是引领建设河南现代农业强省的重要载体。”河南省政协委员周勇介绍,大力支持“中原农谷”建设,河南省科技厅、河南省农业农村厅要加大省内涉农科创资源整合力度,鼓励研发平台和科研机构加速向“中原农谷”核心区集聚,尽快形成科研集聚中心,推动关键技术和新品选育实现重大突破。同时,应尽快出台支持“中原农谷”建设的具体政策和措施,最大限度在项目、资金和政策方面向“中原农谷”汇聚。
多年前,河南工业大学提出在郑州打造全球粮食科技创新高地——“中国粮谷”的构想。在今年河南两会上,也有河南省政协委员建议,“中国粮谷”依托郑州,大力度投入,尽早实施,打造中国乃至世界知名的产学研创投一体的世界一流粮食全链条基地。郑州市政府与河南工业大学有基础、有条件、有能力、有责任通过推动“中国粮谷”建设,实现在“共生、共兴”方面的更大突破。
被誉为“中国治土人”的河南省人大代表党永富接受中新网记者采访时介绍,河南实施农业强省建设,要有两大技术,一是种子技术“芯片”,二是土壤生物技术“芯片”,作为土壤污染治理工作者,有信心和能力推动河南农业强省建设。
姚新领是来自河南驻马店遂平县的种粮大户,他关注到了今年河南省政府工作报告中提及的“加快建设农业强省、加大高标准农田建设”等内容。
“建高标准农田,不是建‘花盆’,要建立高标准农田管理机制,真正能让高标准良田多打粮、打好粮。”姚新领介绍,各级政府部门要提前谋划,制定高标准农田管理相关条例,从生产资料的投入、农业设施的投入、农田设施管理和维护等方面入手,真正让高标准农田多产粮、产好粮。
谈及高标准农田建设,河南省人大代表潘道荣建议,出台支持政策,重点鼓励相关金融部门,围绕高标准农田建设创新金融产品,积极参与高标准农田建设,金融部门可以直接与国有控股的农业公司建立信贷关系,做到债权、债务主体明确,偿还计划和还款责任明确,有效防止金融风险。
目前,河南省驻马店正大力推动“中国药谷”建设,着力打造国内一流新型医药产业基地,一些企业入选农业产业化省重点龙头企业,基地产品远销欧洲、东南亚等20多个国家和地区。
对此,河南省政协委员陈锋建议,把驻马店“中国药谷”建设纳入河南全省产业发展规划,加快自主创新体系建设,大力发展原料药及成品药、普惠养老、中医药等六大产业。(完)
科学家成功合成铹的第14个同位素****** 超镄新核素铹-251不仅是近20年来科研人员首次直接合成的铹的新同位素,也是迄今为止合成的中子数N为148的最重同中子异位素。铹-251具有α衰变性,可以发射出两个不同能量的α粒子。 超重元素的合成及其结构研究是当前原子核物理研究的一个重要前沿领域。铹是可供合成并进行研究的一种超镄元素,引起了人们极大的兴趣。 近日,科研人员利用美国阿贡国家实验室充气谱仪(AGFA)成功合成了超镄新核素铹-251。相关成果发表于核物理学领域期刊《物理评论C》。 此次合成铹的新同位素,运用了什么技术方法?合成得到的铹-251,具有什么基本特征?合成的铹-251对于物理、化学等学科的研究来说具有什么意义?针对上述问题,记者采访了这一工作的主要完成人之一,中国科学院近代物理研究所副研究员黄天衡。 不断进行探索,再次合成铹同位素 铹的化学符号为Lr,原子序数为103,是第11个超铀元素,也是最后一个锕系元素。“一般来说,原子序数大于铹的元素被称为超重元素。”黄天衡介绍。 质子数相同而中子数不同的同一元素的不同核素互称为同位素。同一种元素的同位素在化学元素周期表中占有同一个位置,同位素这个名词也因此而得名。 103号元素由阿伯特·吉奥索等科研人员于1961年首次合成。为纪念著名物理学家欧内斯特·劳伦斯,103号元素被命名为铹。锕系元素是元素周期表ⅢB族中原子序数为89—103的15种化学元素的统称,其中,铹元素在锕系元素中排名最后。 截至目前,科研人员们共合成了铹的14个同位素,质量数分别为251—262、264、266。目前合成的铹的14个同位素中,铹-251至铹-262是在实验中通过熔合反应直接合成的,铹-264和铹-266则是将原子序数更高的核素通过衰变生成的。 目前,铹的化学研究中最常使用的同位素是铹-256和铹-260。科研人员通过化学实验证实铹为镥的较重同系物,具有+3氧化态,可以被归类为元素周期表第七周期中的首个过渡金属元素。由于铹的电子组态与镥并不相同,铹在元素周期表中的位置可能比预期的更具有波动性。在核结构研究方面,受限于合成截面等原因,目前的研究仅集中在铹-255上。然而即使是铹-255,其结构能级的指认目前也还存有争议。 通过熔合反应,形成新的原子核 铹和其他原子序数大于100的超镄元素一样,无法通过中子捕获生成。目前铹只能在重离子加速器中通过熔合反应合成。由于原子核都具有正电荷而会相互排斥,因此,只有当两个原子核的距离足够近的时候,强核力才能克服上述排斥并发生熔合。粒子束需要通过重离子加速器进行加速。在轰击作为靶的原子核时,粒子束的速度必须足够大,以克服原子核之间的排斥力。 “仅仅靠得足够近,还不足以使两个原子核发生熔合。两个原子核更可能会在极短的时间内发生裂变,而非形成单独的原子核。”黄天衡介绍,如果这两个原子核在相互靠近的时候没有发生裂变,而是熔合形成了一个新的原子核,此时新产生的原子核就会处于非常不稳定的激发态。为了达到更稳定的状态,新产生的原子核可能会直接裂变,或放出一些带有激发能量的粒子,从而产生稳定的原子核。 在此次实验中,科研人员利用美国阿贡国家实验室ATLAS直线加速器提供的钛-50束流轰击铊-203靶,通过熔合反应合成了目标核铹-251。这个新的原子核产生后,会和其他反应产物一起被传输到充气谱仪(AGFA)中。在充气谱仪(AGFA)中,铹-251会被电磁分离出来,并注入到半导体探测器中。探测器会对这个新原子核注入的位置、能量和时间进行标记。 “如果这个原子核接下来又发生了一系列衰变,这些衰变的位置、能量和时间将再次被记录下来,直至产生了一个已知的原子核。该原子核可以由其所发生的衰变的特定特征来识别。”黄天衡说。根据这个已知的原子核以及之前所经历的系列连续衰变的过程,科研人员可以鉴别注入探测器的原始产物是什么。 超镄新核素铹-251不仅是近20年来科研人员首次直接合成的铹的新同位素,也是迄今为止合成的中子数N为148的最重同中子异位素(具有相同中子数的核素),还是利用充气谱仪(AGFA)合成的首个新核素。目前的实验结果表明,铹-251具有α衰变性,可以发射出两个不同能量的α粒子。 拓展新的领域,推动超重核理论研究 由于形变,若干决定超重核稳定岛位置的关键轨道能级会降低到质子数Z约等于100、中子数N约等于152核区的费米面附近。对于这一核区的谱学研究可以对现有描述稳定岛的各个理论模型进行严格检验,从而进一步了解超重核稳定岛的相关性质。由于上述原因,对于这一核区的谱学研究是当下探索超重核结构性质的热点课题。 此前的理论模型均无法准确地描述这一核区铹的质子能级演化,相关的实验数据十分有限。“本次实验的初衷为把铹的结构研究进一步拓展到丰质子区,尝试开展系统性的研究。”黄天衡表示。 研究结果表明,形成超重核稳定岛的关键质子能级在铹的丰质子同位素中存在能级反转现象。此外,研究人员还通过推转壳模型下粒子数守恒方法(PNC-CSM)较好地描述了这一现象,并指出了ε_6形变在这一核区的质子能级演化中起到的重要作用。 “此次研究指出了ε_6形变在铹的丰质子核区的质子能级演化中起到的重要的作用,对现有的理论研究提出了新的挑战,将推动超重核领域相关理论研究的发展。”黄天衡说。(记者颉满斌) (文图:赵筱尘 巫邓炎) [责编:天天中] 阅读剩余全文() |